Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes.

نویسندگان

  • Oyebode Olakanmi
  • Banurekha Kesavalu
  • Rajamouli Pasula
  • Maher Y Abdalla
  • Larry S Schlesinger
  • Bradley E Britigan
چکیده

Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga(3+) from Fe(3+). Unlike Fe(3+), Ga(3+) cannot be physiologically reduced to Ga(2+). Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gallium disrupts iron metabolism of mycobacteria residing within human macrophages.

Mycobacterium tuberculosis and M. avium complex (MAC) enter and multiply within monocytes and macrophages in phagosomes. In vitro growth studies using standard culture media indicate that siderophore-mediated iron (Fe) acquisition plays a critical role in the growth and metabolism of both M. tuberculosis and MAC. However, the applicability of such studies to conditions within the macrophage pha...

متن کامل

Inhibition of Ribonucleotide ReducÃ-aseby Gallium in Murine Leukemic LI 210 Cells1

Our previous studies of the mechanism of cell growth inhibition by gallium have suggested that the block in cellular iron uptake induced by transferrin-gallium results in an inhibition of the iron-dependent M2 subunit of ribonucleotide reducÃ-ase.However, it is not known whether the inhibitory effect of gallium on ribonucleotide reducÃ-aseis solely the result of limiting iron availability for e...

متن کامل

Hepatocellular carcinoma detection by gallium scan and subsequent treatment by gallium maltolate: rationale and case study.

Gallium is antiproliferative to many types of cancer, due primarily to its ability to act as a non-functional mimic of ferric iron (Fe(3+)). Because Fe(3+) is needed for ribonucleotide reductase activity--and thus DNA synthesis--gallium can inhibit DNA production and cell division. Diagnostic gallium scans have shown that hepatocellular carcinoma (HCC) is commonly avid for gallium. Furthermore,...

متن کامل

The conversion of nitrate in water to diatomic nitrogen gas by immobilized Pseudomonas stutzeri on vermiculite

Denitrification is a reduction of nitrate by heterotrophic and autotrophic bacteria that may ultimately produce molecular nitrogen (N2) through a series of intermediate nitrogen compounds.Vermiculite is a hydrous phyllosilicate mineral (Mg, Fe+2,Fe+3)3[(Al,Si)4O10](OH)2·4H2O with several layers for bacterial immobilization. The goal of this study was removal of nitrate from water with vermiculi...

متن کامل

Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice.

Gallium (Ga) is a semimetallic element that has demonstrated therapeutic and diagnostic-imaging potential in a number of disease settings, including cancer and infectious diseases. Gallium's biological actions stem from its ionic radius being almost the same as that of ferric iron (Fe(3+)), whereby it can replace iron (Fe) in Fe(3+)-dependent biological systems, such as bacterial and mammalian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 12  شماره 

صفحات  -

تاریخ انتشار 2013